Performance-based fire engineering for civil engineeering structural desigin

-20%

Performance-based fire engineering for civil engineeering structural desigin

1 opinia

Format:

pdf

KUP I POBIERZ

Format: pdf

52,00  65,00 (-20%)

Najniższa cena z 30 dni: 65,00 zł 

W ABONAMENCIE

od 3,50

Masz już abonament? Zaloguj się

TA KSIĄŻKA JEST W ABONAMENCIE

Już od 49,00 zł miesięcznie za 5 ebooków!

WYBIERZ SWÓJ ABONAMENT

The author expresses his thanks to dr hab. inż. Adam Glema, prof. of Poznan University of Technology, for his supervision, advice and huge support. Many thanks are also directed to dr inż. Janusz Dębiński, for his general advice and comments that he shared with me during this research. From October 2011 to September 2015, financial support was provided from Ruukki Construction OY within scientific grant 11-962/2011-14. From October 2016 to September 2017, the research was financially supported by the National Science Centre of Poland under the Etiuda-4 project. The experimental work was sponsored entirely by the Building Research Institute of Poland, with the support of dr inż. Paweł Sulik and dr inż. Wojciech Węgrzyński. This support is gratefully acknowledged.


Rok wydania2020
Liczba stron302
KategoriaBudownictwo
WydawcaWydawnictwo Politechniki Poznańskiej
ISBN-13978-83-7775-603-4
Numer wydania1
Język publikacjiangielski
Informacja o sprzedawcyePWN sp. z o.o.

Ciekawe propozycje

Spis treści

  CONTENTS
  List of Figures iv
  List of Tables x
  Notation xi
  Acknowledgment xvi
  1. Introduction 1
    1.1. State-of-the-art    1
      1.1.1. Performance-based fire engineering    1
      1.1.2. Advancements in the solving of structural fire engineering problems    9
    1.2. Research objectives and the concept of the thesis    11
  2. Theoretical background 17
    2.1. Fluid dynamics in fire engineering    17
      2.1.1. Fundamental laws of fluid dynamics and heat transfer    18
      2.1.2. Turbulence modelling    25
      2.1.3. Combustion    29
      2.1.4. Soot production    31
      2.1.5. Radiation    32
    2.2. Nonlinear solid mechanics in performance-based structural fire design    37
      2.2.1. Formulation of a linear elastic problem    37
      2.2.2. Finite Element Method in linear elastic problems    39
      2.2.3. Large strain-displacement formulation    41
      2.2.4. Material nonlinearity in structural fire engineering problems    45
      2.2.5. Stiffness of a structural element in fire    54
      2.2.6. Solution of a nonlinear problem    56
    2.3. Physical bases for heat exchange between the fire environment and the structure    65
      2.3.1. Convective heat flux    66
      2.3.2. Radiative heat flux    68
      2.3.3. Adiabatic surface temperature    69
      2.3.4. Heat conduction    79
  3. Coupling between the fire and the mechanical models 81
    3.1. Concept of CFD-FEM coupling    81
    3.2. Incompatibility between CFD and FEM models for steel framed structures    81
    3.3. Development of a heat transfer model    84
      3.3.1. Virtual surfaces    84
      3.3.2. Shadow effect    86
      3.3.3. Heat transfer model formulation    87
    3.4. Implementation    96
      3.4.1. Approximate calculation of view factors    98
      3.4.2. Verification of the view factors calculation method    102
      3.4.3. Finite difference method approximation of a conduction problem    108
    3.5. Verification and Validation    112
      3.5.1. Furnace tests with uniform thermal exposure of a cross-section    113
      3.5.2. Furnace tests with nonuniform thermal exposure of a cross-section    116
      3.5.3. Compartment fire tests    123
      3.5.4. Localised fire tests    127
      3.5.5. Summary    140
    3.6. CFD-FEM coupling procedure    141
      3.6.1. Setting CFD output    142
      3.6.2. Heat transfer calculations    142
  4. Mechanically based method for determining fire scenarios 145
    4.1. Complexity and robustness of frame structures    145
    4.2. The idea of the method    147
    4.3. Theoretical bases    150
    4.4. Complexity measures    151
    4.5. Method implementation    153
    4.6. Verification    155
  5. Exemplary analysis of a structure subjected to fire    171
    5.1. General description of the structure    171
    5.2. Actions    171
      5.2.1. Fire actions    172
      5.2.2. Permanent loads    175
      5.2.3. Imposed loads    176
      5.2.4. Snow load    177
      5.2.5. Wind load    177
      5.2.6. Combinations of actions    178
    5.3. Preliminary analyses    183
      5.3.1. Design according to Eurocode simple calculation model    183
      5.3.2. Response to uniform ISO 834 fire exposure    184
    5.4. Numerical models    187
      5.4.1. CFD fire model    187
      5.4.2. FEM mechanical model    191
    5.5. Fire scenario determination    193
    5.6. CFD-FEM coupling    197
    5.7. Results    199
      5.7.1. Temperature distribution in a fire compartment    200
      5.7.2. Fire-structure heat transfer results    203
      5.7.3. Effect of combinations of actions on the mechanical response of the structure in fire    215
      5.7.4. Local response of the structure in fire    216
      5.7.5. Global response of the structure in fire    242
      5.7.6. Summary    256
  6. Concluding remarks    259
  References    265
  Appendices    278
  Summary     279
RozwińZwiń